3.27.75 \(\int \frac {\sqrt {1-2 x} (2+3 x)^{5/2}}{\sqrt {3+5 x}} \, dx\) [2675]

Optimal. Leaf size=158 \[ -\frac {859 \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}}{4375}-\frac {23}{875} \sqrt {1-2 x} (2+3 x)^{3/2} \sqrt {3+5 x}+\frac {2}{35} \sqrt {1-2 x} (2+3 x)^{5/2} \sqrt {3+5 x}-\frac {61151 \sqrt {\frac {11}{3}} E\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{43750}-\frac {314 \sqrt {33} F\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{21875} \]

[Out]

-61151/131250*EllipticE(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)-314/21875*EllipticF(1/7*21^(1/2)*
(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)-23/875*(2+3*x)^(3/2)*(1-2*x)^(1/2)*(3+5*x)^(1/2)+2/35*(2+3*x)^(5/2)*(1
-2*x)^(1/2)*(3+5*x)^(1/2)-859/4375*(1-2*x)^(1/2)*(2+3*x)^(1/2)*(3+5*x)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 158, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {103, 159, 164, 114, 120} \begin {gather*} -\frac {314 \sqrt {33} F\left (\text {ArcSin}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{21875}-\frac {61151 \sqrt {\frac {11}{3}} E\left (\text {ArcSin}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{43750}+\frac {2}{35} \sqrt {1-2 x} \sqrt {5 x+3} (3 x+2)^{5/2}-\frac {23}{875} \sqrt {1-2 x} \sqrt {5 x+3} (3 x+2)^{3/2}-\frac {859 \sqrt {1-2 x} \sqrt {5 x+3} \sqrt {3 x+2}}{4375} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[1 - 2*x]*(2 + 3*x)^(5/2))/Sqrt[3 + 5*x],x]

[Out]

(-859*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/4375 - (23*Sqrt[1 - 2*x]*(2 + 3*x)^(3/2)*Sqrt[3 + 5*x])/875 +
 (2*Sqrt[1 - 2*x]*(2 + 3*x)^(5/2)*Sqrt[3 + 5*x])/35 - (61151*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*
x]], 35/33])/43750 - (314*Sqrt[33]*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/21875

Rule 103

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(a + b
*x)^m*(c + d*x)^n*((e + f*x)^(p + 1)/(f*(m + n + p + 1))), x] - Dist[1/(f*(m + n + p + 1)), Int[(a + b*x)^(m -
 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[c*m*(b*e - a*f) + a*n*(d*e - c*f) + (d*m*(b*e - a*f) + b*n*(d*e - c*f))
*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && GtQ[m, 0] && GtQ[n, 0] && NeQ[m + n + p + 1, 0] && (Integ
ersQ[2*m, 2*n, 2*p] || (IntegersQ[m, n + p] || IntegersQ[p, m + n]))

Rule 114

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2/b)*Rt[-(b
*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /;
 FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-(b*c - a*d)/d, 0] &&
  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])

Rule 120

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[2*(Rt[-b/d,
 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)
/(d*(b*e - a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] && Po
sQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a
+ b*x] && GtQ[((-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[((-d)*e + c*f)/f,
0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f/b]))

Rule 159

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[h*(a + b*x)^m*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 2))), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 164

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rubi steps

\begin {align*} \int \frac {\sqrt {1-2 x} (2+3 x)^{5/2}}{\sqrt {3+5 x}} \, dx &=\frac {2}{35} \sqrt {1-2 x} (2+3 x)^{5/2} \sqrt {3+5 x}-\frac {2}{35} \int \frac {\left (-\frac {27}{2}-\frac {23 x}{2}\right ) (2+3 x)^{3/2}}{\sqrt {1-2 x} \sqrt {3+5 x}} \, dx\\ &=-\frac {23}{875} \sqrt {1-2 x} (2+3 x)^{3/2} \sqrt {3+5 x}+\frac {2}{35} \sqrt {1-2 x} (2+3 x)^{5/2} \sqrt {3+5 x}+\frac {2}{875} \int \frac {\sqrt {2+3 x} \left (\frac {3275}{4}+\frac {2577 x}{2}\right )}{\sqrt {1-2 x} \sqrt {3+5 x}} \, dx\\ &=-\frac {859 \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}}{4375}-\frac {23}{875} \sqrt {1-2 x} (2+3 x)^{3/2} \sqrt {3+5 x}+\frac {2}{35} \sqrt {1-2 x} (2+3 x)^{5/2} \sqrt {3+5 x}-\frac {2 \int \frac {-\frac {116289}{4}-\frac {183453 x}{4}}{\sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}} \, dx}{13125}\\ &=-\frac {859 \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}}{4375}-\frac {23}{875} \sqrt {1-2 x} (2+3 x)^{3/2} \sqrt {3+5 x}+\frac {2}{35} \sqrt {1-2 x} (2+3 x)^{5/2} \sqrt {3+5 x}+\frac {5181 \int \frac {1}{\sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}} \, dx}{21875}+\frac {61151 \int \frac {\sqrt {3+5 x}}{\sqrt {1-2 x} \sqrt {2+3 x}} \, dx}{43750}\\ &=-\frac {859 \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}}{4375}-\frac {23}{875} \sqrt {1-2 x} (2+3 x)^{3/2} \sqrt {3+5 x}+\frac {2}{35} \sqrt {1-2 x} (2+3 x)^{5/2} \sqrt {3+5 x}-\frac {61151 \sqrt {\frac {11}{3}} E\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{43750}-\frac {314 \sqrt {33} F\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{21875}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 3.49, size = 97, normalized size = 0.61 \begin {gather*} \frac {15 \sqrt {2-4 x} \sqrt {2+3 x} \sqrt {3+5 x} \left (-89+2655 x+2250 x^2\right )+61151 E\left (\sin ^{-1}\left (\sqrt {\frac {2}{11}} \sqrt {3+5 x}\right )|-\frac {33}{2}\right )-30065 F\left (\sin ^{-1}\left (\sqrt {\frac {2}{11}} \sqrt {3+5 x}\right )|-\frac {33}{2}\right )}{65625 \sqrt {2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[1 - 2*x]*(2 + 3*x)^(5/2))/Sqrt[3 + 5*x],x]

[Out]

(15*Sqrt[2 - 4*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x]*(-89 + 2655*x + 2250*x^2) + 61151*EllipticE[ArcSin[Sqrt[2/11]*Sq
rt[3 + 5*x]], -33/2] - 30065*EllipticF[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2])/(65625*Sqrt[2])

________________________________________________________________________________________

Maple [A]
time = 0.09, size = 148, normalized size = 0.94

method result size
default \(-\frac {\sqrt {2+3 x}\, \sqrt {1-2 x}\, \sqrt {3+5 x}\, \left (31086 \sqrt {2}\, \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}\, \EllipticF \left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )-61151 \sqrt {2}\, \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}\, \EllipticE \left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )-2025000 x^{5}-3942000 x^{4}-1279350 x^{3}+1023960 x^{2}+459210 x -16020\right )}{131250 \left (30 x^{3}+23 x^{2}-7 x -6\right )}\) \(148\)
elliptic \(\frac {\sqrt {-\left (3+5 x \right ) \left (-1+2 x \right ) \left (2+3 x \right )}\, \left (\frac {18 x^{2} \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{35}+\frac {531 x \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{875}-\frac {89 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{4375}+\frac {12921 \sqrt {28+42 x}\, \sqrt {-15 x -9}\, \sqrt {21-42 x}\, \EllipticF \left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )}{61250 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}+\frac {61151 \sqrt {28+42 x}\, \sqrt {-15 x -9}\, \sqrt {21-42 x}\, \left (-\frac {\EllipticE \left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )}{15}-\frac {3 \EllipticF \left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )}{5}\right )}{183750 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}\right )}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(234\)
risch \(-\frac {\left (2250 x^{2}+2655 x -89\right ) \sqrt {3+5 x}\, \left (-1+2 x \right ) \sqrt {2+3 x}\, \sqrt {\left (1-2 x \right ) \left (2+3 x \right ) \left (3+5 x \right )}}{4375 \sqrt {-\left (3+5 x \right ) \left (-1+2 x \right ) \left (2+3 x \right )}\, \sqrt {1-2 x}}-\frac {\left (-\frac {38763 \sqrt {66+110 x}\, \sqrt {10+15 x}\, \sqrt {55-110 x}\, \EllipticF \left (\frac {\sqrt {66+110 x}}{11}, \frac {i \sqrt {66}}{2}\right )}{481250 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}-\frac {61151 \sqrt {66+110 x}\, \sqrt {10+15 x}\, \sqrt {55-110 x}\, \left (\frac {\EllipticE \left (\frac {\sqrt {66+110 x}}{11}, \frac {i \sqrt {66}}{2}\right )}{15}-\frac {2 \EllipticF \left (\frac {\sqrt {66+110 x}}{11}, \frac {i \sqrt {66}}{2}\right )}{3}\right )}{481250 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}\right ) \sqrt {\left (1-2 x \right ) \left (2+3 x \right ) \left (3+5 x \right )}}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(252\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2+3*x)^(5/2)*(1-2*x)^(1/2)/(3+5*x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/131250*(2+3*x)^(1/2)*(1-2*x)^(1/2)*(3+5*x)^(1/2)*(31086*2^(1/2)*(2+3*x)^(1/2)*(-3-5*x)^(1/2)*(1-2*x)^(1/2)*
EllipticF(1/7*(28+42*x)^(1/2),1/2*70^(1/2))-61151*2^(1/2)*(2+3*x)^(1/2)*(-3-5*x)^(1/2)*(1-2*x)^(1/2)*EllipticE
(1/7*(28+42*x)^(1/2),1/2*70^(1/2))-2025000*x^5-3942000*x^4-1279350*x^3+1023960*x^2+459210*x-16020)/(30*x^3+23*
x^2-7*x-6)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^(5/2)*(1-2*x)^(1/2)/(3+5*x)^(1/2),x, algorithm="maxima")

[Out]

integrate((3*x + 2)^(5/2)*sqrt(-2*x + 1)/sqrt(5*x + 3), x)

________________________________________________________________________________________

Fricas [A]
time = 0.11, size = 33, normalized size = 0.21 \begin {gather*} \frac {1}{4375} \, {\left (2250 \, x^{2} + 2655 \, x - 89\right )} \sqrt {5 \, x + 3} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^(5/2)*(1-2*x)^(1/2)/(3+5*x)^(1/2),x, algorithm="fricas")

[Out]

1/4375*(2250*x^2 + 2655*x - 89)*sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)**(5/2)*(1-2*x)**(1/2)/(3+5*x)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^(5/2)*(1-2*x)^(1/2)/(3+5*x)^(1/2),x, algorithm="giac")

[Out]

integrate((3*x + 2)^(5/2)*sqrt(-2*x + 1)/sqrt(5*x + 3), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {1-2\,x}\,{\left (3\,x+2\right )}^{5/2}}{\sqrt {5\,x+3}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((1 - 2*x)^(1/2)*(3*x + 2)^(5/2))/(5*x + 3)^(1/2),x)

[Out]

int(((1 - 2*x)^(1/2)*(3*x + 2)^(5/2))/(5*x + 3)^(1/2), x)

________________________________________________________________________________________